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We investigate the phenomenon of extinction of a long-lived self-regulating stochastic population, caused by
intrinsic �demographic� noise. Extinction typically occurs via one of two scenarios depending on whether the
absorbing state n=0 is a repelling �scenario A� or attracting �scenario B� point of the deterministic rate
equation. In scenario A the metastable stochastic population resides in the vicinity of an attracting fixed point
next to the repelling point n=0. In scenario B there is an intermediate repelling point n=n1 between the
attracting point n=0 and another attracting point n=n2 in the vicinity of which the metastable population
resides. The crux of the theory is a dissipative variant of WKB �Wentzel-Kramers-Brillouin� approximation
which assumes that the typical population size in the metastable state is large. Starting from the master
equation, we calculate the quasistationary probability distribution of the population sizes and the �exponentially
long� mean time to extinction for each of the two scenarios. When necessary, the WKB approximation is
complemented �i� by a recursive solution of the quasistationary master equation at small n and �ii� by the van
Kampen system-size expansion, valid near the fixed points of the deterministic rate equation. The theory yields
both entropic barriers to extinction and pre-exponential factors, and holds for a general set of multistep
processes when detailed balance is broken. The results simplify considerably for single-step processes and near
the characteristic bifurcations of scenarios A and B.
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I. INTRODUCTION

Extinction of an isolated stochastic population after main-
taining a long-lived state is a dramatic phenomenon. It oc-
curs, even in the absence of environmental variations, be-
cause of an unusual chain of random events when population
losses dominate over gains. Population extinction risk is a
key negative factor in viability of small populations �1,2�,
whereas extinction of a disease following an epidemic out-
burst �1,3� is of course favorable. The possibility and conse-
quences of extinction of biologically important components,
regulated by chemical reactions in living cells, have also
attracted interest �4�. As stochastic population dynamics are
usually far from equilibrium, and no general methods of
evaluating large fluctuations are available, they are of much
interest to physics �5,6�.

This work deals with an isolated single-species population
undergoing a set of gain-loss processes. We will assume that
the population is well mixed, so that spatial degrees of free-
dom are irrelevant. At the level of the deterministic rate
equation �henceforth rate equation�, which describes the
time history of the mean population size n̄�t� and ignores
fluctuations, n̄�t� flows to an attracting fixed point, where the
gain and loss processes balance each other. The actual sto-
chastic population, however, behaves differently and ulti-
mately becomes extinct. This is because, in the absence of
influx of new individuals, the empty state n=0 is absorbing:
the probability of exiting from it is zero �7�.

Although extinction �and fluctuations in general� are be-
yond its scope, the rate equation is a convenient starting
point of our analysis. For an isolated single-species popula-
tion the rate equation can be written as

dn̄

dt
= n̄��n̄� , �1�

where ��x� is a smooth function determined by the specific
gain-loss processes, see below. For generic gain-loss pro-
cesses ���0��0. For ���0��0 the fixed point n̄=0 is repel-
ling, whereas for ���0��0 it is attracting. In the former
case, the next fixed point n̄=n1�0 of Eq. �1� is attracting,
see Fig. 1�a�. According to the rate equation, the mean popu-
lation size in this case flows to n̄=n1 and stays there forever.
When varying the rate constants of the gain-loss processes,
the attracting fixed point n̄=n1 emerges via a transcritical
bifurcation.

Now let n̄=0 be an attracting fixed point of the rate equa-
tion �1�. To have a long-lived population of a nonzero size, at
least two more fixed points of the rate Eq. �1� must be
present: a repelling point n̄=n1�0 and an attracting point
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FIG. 1. �Color online� Typical extinction scenarios are deter-
mined by the character of the fixed point n̄=0 of the rate equation
�1�. �a� Scenario A: the fixed point n̄=0 is repelling. In the stochas-
tic system extinction occurs via a large fluctuation which brings the
metastable population from a vicinity of the attracting fixed point
n̄=n1 of the rate equation directly to the absorbing state n=0. �b�
Scenario B: the fixed point n̄=0 is attracting. In the stochastic sys-
tem extinction occurs via a large fluctuation which brings the meta-
stable population from a vicinity of the next attracting fixed point
n̄=n2 of the rate equation to a vicinity of the repelling fixed point
n̄=n1. From there the population flows “downhill” to the absorbing
state n=0 almost deterministically.
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n̄=n2�n1, see Fig. 1�b�. When starting from any n̄�t=0�
�n1, the mean population size flows to n̄=n2 and, according
to the rate equation, stays there forever. The characteristic
bifurcation in this case is saddle node.

As we will see shortly, these two cases give rise to two
different extinction scenarios of stochastic populations. To
account for the intrinsic noise, we employ the master equa-
tion

dPn�t�
dt

= �
r

�Wr�n − r�Pn−r�t� − Wr�n�Pn�t�� , �2�

which describes the evolution of the probability Pn�t� to have
n individuals at time t. Here Wr�k��0 is the transition rate
between the states with k and k+r individuals, whereas r
= �1, �2, . . ., and all terms that include Pk with k�0 are
assumed to be zero. For P0�t� the master equation is

dP0�t�
dt

= �
r�0

Wr�− r�P−r�t� . �3�

For n=0 to be an absorbing state, the process rates must
obey, for any r= �1, �2, . . ., the condition Wr�0�=0.

We will be interested in the important regime of param-
eters for which the mean population size in the metastable
state, as predicted by �1�, is large compared to one. Here,
prior to extinction, a long-lived probability distribution func-
tion �PDF� of the population sets in, on a relaxation time
scale tr, around the corresponding attracting fixed point of
the rate equation. This long-lived PDF, however, is meta-
stable: it slowly decays in time. Simultaneously, the prob-
ability to find the population extinct slowly grows in time,
see, e.g., Refs. �8,9�,

Pn�0�t � tr� � �ne−t/�, P0�t � tr� � 1 − e−t/�. �4�

The shape function �n �n=1,2 , . . .� of the metastable PDF is
called the quasistationary distribution �QSD�. For metastable
populations a very strong inequality, �≫ tr holds, and the
decay time � is equal to the mean time to extinction �MTE�:
the mean time it takes the stochastic process to reach the
absorbing state at n=0. The main objectives of this work is
to accurately, and analytically, calculate the QSD �n and the
MTE � of a population which experiences quite a general set
of stochastic gain-loss processes. The crux of the method is a
dissipative WKB approximation �10–12�, where one assumes
n�1, treats n as a continuous variable and searches for �n as

�n = e−NS�n�−S1�n�−�1/N�S2�n�−¯. �5�

Here N�1 is a large parameter which scales as the mean
population size in the metastable state. S�n� is called the
action, whereas a�n�=e−S1�n� is called the amplitude. The
WKB approximation breaks down at n=O�1�. Here a differ-
ent approximation must be used, as explained below.

Here is an overview of the two extinction scenarios as
described by the WKB approximation. First, let n̄=0 be a
repelling fixed point of the rate equation, see Fig. 1�a�. In a
stochastic description extinction occurs via a large fluctua-
tion which, acting against an effective entropy barrier, brings
the population from a vicinity of n=n1 directly to the absorb-
ing state n=0. In the WKB language this transition is pos-

sible because of the presence of the fluctuational momentum
p=dS /dn, see Fig. 2. The attracting and repelling fixed
points of the rate equation n̄=n1 and n̄=0, respectively, be-
come hyperbolic fixed points of an extended phase plane
�n , p�. Importantly, an additional hyperbolic fixed point
�0, pf�—the fluctuational extinction point—appears here,
with a zero coordinate, n=0, but a nonzero momentum pf
�13–15�. The most probable path to extinction is the hetero-
clinic trajectory, directly connecting the “metastable point,”
that is the hyperbolic point �n1 ,0�, and the “fluctuational
extinction point”: the hyperbolic point �0, pf�. �Such escape
trajectories—heteroclinic trajectories with a nonzero
momentum—are often called “activation trajectories,” see,
e.g., �12�.� This is what we call extinction scenario A.

Now let n̄=0 be an attracting fixed point of the rate equa-
tion �1�, so that the metastable population resides in the vi-
cinity of n=n2, see Fig. 1�b�. In the stochastic description,
extinction occurs via a large fluctuation which brings the
population from a vicinity of n=n2 to a vicinity of the repel-
ling fixed point n1. From there the system flows into the
absorbing state n=0 “downhill,” that is almost deterministi-
cally. In the framework of WKB theory the transition from n2
to n1 occurs in the extended phase plane �n , p� where all
three fixed points are hyperbolic, see Fig. 3. Here the optimal
path to extinction is composed of two segments: the nonzero-
momentum heteroclinic trajectory connecting the hyperbolic
fixed points �n2 ,0� and �n1 ,0� �the activation trajectory�, and
the zero-momentum segment going from n=n1 to n=0 �the
relaxation trajectory�. This is what we call extinction sce-
nario B.

The MTE � and/or the QSD �n of metastable single-
species stochastic populations were calculated previously in
particular examples in different contexts of physics, chemis-
try, population biology, epidemiology, cell biology, etc.
Among them there is a large body of work which approxi-
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FIG. 2. �Color online� Example of scenario A of population
extinction driven by intrinsic noise. Shown are the zero-energy tra-
jectories of the WKB Hamiltonian H�n , p� for the reactions

A→
	

2A, A→



0” and 2A→
�

0” �16�. The trajectories denoted by the
thicker line determine the WKB solution for �n, obtained in Ref.
�16�. The activation trajectory connects the metastable point �n1 ,0�
and the fluctuational extinction point �0, pf�, where pf =−ln R0, and
R0=	 /
. The effective entropy barrier to extinction is equal to
N�S, where N=	 /� and �S is the area of the shaded region, given
by Eq. �76�.
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mated the master equation by an effective Fokker-Planck
equation, derived via the van Kampen system size expansion
or related recipes. Once the Fokker-Planck equation is ob-
tained, the MTE and QSD can be calculated by standard
methods �5,6�. Unfortunately, this approximation is in gen-
eral uncontrolled. It fails in its description of the tails of the
QSD, and gives exponentially large errors in the MTE, as
shown in Refs. �16–19�.

With a few exceptions, accurate analytic results for the
MTE and QSD are only available for single-step gain-loss
processes: r= �1 in Eq. �2�. In this case the MTE can be
determined exactly by employing the backward master equa-
tion �5,6�. This yields a cumbersome analytic expression for
the MTE which, for a large population size in the metastable
state, can be simplified via a saddle-point approximation.
Such a procedure was implemented in Ref. �18�. In its turn,
the QSD �n of single-step processes can be calculated from a
recursive relation obtained when substituting Eq. �4� in the
master equation. Several model examples of multistep pro-
cesses were considered in Refs. �9,16,19,20�, all of them
belonging to extinction scenario A. We will generalize the
previous results substantially and determine the MTE and
QSD for quite a general set of gain-loss processes pertaining
to extinction scenario A. We will also determine the MTE
and QSD for extinction scenario B.

Our WKB theory starts with applying the ansatz �Eq. �5��
to an eigenvalue problem for the QSD �n which is nothing
but the first excited eigenvector of the master equation. In the
leading WKB order one arrives at the problem of finding
zero-energy trajectories of an effective classical Hamiltonian
�12�. There are two different types of zero-energy phase tra-
jectories �in addition to the extinction line q=0�: the activa-

tion and relaxation trajectories, which correspond to the fast
and slow WKB modes, respectively �21�. To obtain the pre-
exponents, one needs to consider the subleading WKB order.
The WKB calculations are simpler for scenario A, as the
relaxation trajectory does not play any role here. In scenario
B both the activation, and the relaxation trajectories are im-
portant. In both scenarios the WKB approximation breaks
down at n=O�1�. Here we find the QSD, up to a normaliza-
tion constant, from a recursive relation, obtained by lineariz-
ing the process rates with respect to n at sufficiently small n.
In scenario A it suffices to match the recursive solution with
the fast-mode solution in their joint region of validity, in
much the same way as it was done by Kessler and Shnerb
�16� in a particular example of three stochastic reactions. In
Scenario B the slow mode dominates the WKB solution at
n�n1. It diverges, however, at n=n1. To obtain a regular
solution there, one needs to go beyond the WKB approxima-
tion and account, in a close vicinity of n=n1, for strong
coupling between the fast- and slow-mode solutions. This
can be done via the van Kampen system size expansion of
the master equation which does hold in the vicinity of n
=n1. This procedure was first implemented by Meerson and
Sasorov �21�, in a model problem of noise-driven population
explosion. Then it has been employed by Escudero and Ka-
menev �22� in the context of a WKB theory of stochastic
population switches between two different metastable states.
The theory of Escudero and Kamenev �22� was formulated
for quite a general set of gain-loss processes. In this paper we
will adopt their general approach, and some of their notation,
in the problem of population extinction.

Here is a plan of the remainder of the paper. Section II
starts with a formulation of the eigenvalue problem for the
QSD. Then we expose the WKB approximation and the fast-
and slow-mode WKB solutions. The derivation here is quite
general and holds for extinction scenarios A and B. Section
III presents a derivation of recursive solution of the quasis-
tationary master equation for sufficiently small n. This deri-
vation, which also holds for extinction scenarios A and B, is
specific to population extinction. Except for simple particular
cases �see e.g., Ref. �16��, it has not been attempted before.
In Sec. IV we match the fast-mode WKB solution with the
recursive small-n solution and obtain general expressions for
the QSD and MTE in scenario A. In the same section we
obtain the QSD and MTE for single-step processes and near
the transcritical bifurcation, characteristic of scenario A.
Then we illustrate our theory on several particular examples,
some of which investigated previously. In Sec. V we deter-
mine the QSD and MTE for scenario B. Then we again apply
our results to single-step processes and near the saddle-node
bifurcation, characteristic of scenario B. Furthermore, we
consider a particular example of three stochastic reactions
and compare our theoretical predictions with a numerical so-
lution of the master equation. A summary of our results is
presented in Sec. VI.

II. EIGENVALUE PROBLEM, WKB APPROXIMATION,
AND FAST- AND SLOW-MODE SOLUTIONS

When starting at t=0 from a sufficiently large population,
the probability distribution Pn�t�, as described by the master
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FIG. 3. �Color online� Example of scenario B of population
extinction driven by intrinsic noise. Shown are the zero-energy tra-
jectories �Eq. �106�� on the phase plane �n , p� of the WKB Hamil-

tonian �105� for the reactions A→



0, 2A→
	

3A and 3A→
�

2A. The
trajectories denoted by the thicker lines determine the WKB solu-
tion for the QSD. The most probable path to extinction first goes
along the nonzero-momentum heteroclinic trajectory �the activation
trajectory� which connects the points �n2 ,0� and �n1 ,0�. Then the
population flows almost deterministically to the extinction point
�0,0� along a zero-momentum segment �the relaxation trajectory�.
The effective entropy barrier to extinction is equal to N�S, where
N=3	 / �2��, and �S is the area of the shaded region, given by Eq.
�110�.
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equation �2� approaches, on a relaxation time scale tr, a long-
lived metastable PDF peaked at a nonzero attracting fixed
point of the rate equation. The metastable distribution is
slowly “leaking” to zero, see Eq. �4�. Let us denote the non-
zero attracting fixed point by n=n� �n�=n1,2 for scenario A
and B, respectively, see Figs. 2 and 3�. Using Eq. �4�, we
arrive at an eigenvalue problem for the QSD �n, n=1,2. . .:

�
r

�Wr�n − r��n−r − Wr�n��n� = − E�n. �6�

Importantly, the eigenvalue E=1 /� turns out to be exponen-
tially small compared to the relaxation time tr. Therefore, the
term in the right-hand side of Eq. �6� can be neglected
�12,16,21,22�, and we have to deal with a quasistationary
equation

�
r

�Wr�n − r��n−r − Wr�n��n� = 0, n = 1,2, . . . . �7�

For definiteness, we normalize the QSD to unity: �n=1

 �n

=1. Once �n is found, we can use Eqs. �3� and �4� to calcu-
late the MTE,

E = 1/� = �
r�0

Wr�− r��−r. �8�

Let us introduce a rescaled coordinate q=n /N, where N�1
is the large parameter of the problem. The central assumption
of our theory is that, after a proper rescaling of time which
will be introduced shortly, the process rates can be repre-
sented as

Wr�n� � Wr�Nq� = Nwr�q� + ur�q� + O�1/N� , �9�

where, for q=O�1�, wr�q� and ur�q� are O�1�. This assump-
tion guarantees that the population be long lived, and is cru-
cial both for the WKB approximation that we present in this
Section, and for the recursive solution of Eq. �7� that we will
be dealing with later. As q=0 is the absorbing state, wr�0�
=ur�0�=0.

For n�1 we can employ the WKB ansatz �Eq. �5��,

��q� � �Nq � Ae−NS�q�−S1�q�, �10�

where S�q� and S1�q� are assumed to be O�1�, and a constant
prefactor A is introduced for convenience, see below. Now
we assume that �rmax��N, Taylor expand the functions of q
−r /N in Eq. �7� around q and keep terms up to O�1� order.
We obtain the equation derived by Escudero and Kamenev
�22�,

�
r

�Nwr + ur�	erS�
1 +
r

N
S1� −

r2

2N
S� −

r

N

wr�

wr
� − 1� = 0,

�11�

where the primes denote differentiation with respect to q. In
the leading order O�N�, this equation yields a stationary
Hamilton-Jacobi equation H�q ,S��=0, where

H�q,p� = �
r

wr�q��erp − 1� �12�

is the effective Hamiltonian, and p=S� is the momentum
�12�. Therefore, in the leading WKB order, one needs to find

zero-energy phase trajectories of the Hamiltonian �12�. As
wr�0�=0 for any r, one such trajectory is q=0 at an arbitrary
p: the extinction line. This line is of no importance in the
WKB theory, however. What we need are phase trajectories
p= p�q�. One of them is the relaxation trajectory p=0. In
general, there is one and only one additional phase trajectory
for which p= pa�q��0, except in some points q. Let us prove
this statement. The Hamiltonian H�q , p� vanishes at p=0.
Differentiating Eq. �12� twice with respect to p, we obtain
Hpp�q , p�=�rr

2wr�q�erp�0. Therefore H is a convex func-
tion of p, and so it has one and only one additional real root
�23�. The relaxation trajectory p=0 and activation trajectory
p= pa�q� give rise to the slow and fast WKB modes, respec-
tively, as was shown in a particular example in Ref. �21�.

The q dynamics along p=0 is described by the Hamilton’s
equation

q̇ =
 �H�q,p�
�p



p=0

� Hp�q,0� = �
r

rwr�q� , �13�

which is nothing but the �rescaled� rate equation �1�. The
nontrivial fixed points of the rate equation, qi=ni /N, are
positive roots of the equation Hp�qi ,0�=0. As pa�qi�=0, the
activation trajectory p= pa�q� crosses the relaxation trajec-
tory in these fixed points. As wr�0�=0 for any r, the small-q
expansion of Eq. �13� generically starts with a linear term in
q. In the remainder of this paper we assume that the linear
decay rate is nonzero in the leading order: w−1� �0�=��0.
Therefore, we can always rescale time, and all the rates, by
�. This procedure uniquely defines the rescaling leading to
Eq. �9�.

In extinction scenario A, see Fig. 2, the most probable
path to extinction is the heteroclinic trajectory connecting the
fixed point �q� ,0� of the Hamiltonian system �here q� is the
attracting point of the rate equation� with the fluctuational
extinction point �0, pf�.

In extinction scenario B, see Fig. 3, the most probable
path to extinction is composed of two segments. The first one
is the activation trajectory: a nonzero-momentum hetero-
clinic trajectory connecting the fixed point �q� ,0� with an
intermediate fixed point �qrep ,0�, where qrep is a repelling
fixed point of the rate equation. The second one is a relax-
ation segment p=0, connecting the point �qrep ,0� with the
deterministic extinction point �0,0�.

For the fast mode one obtains �12�

S�q� = S�f��q� = �q

d�pa��� , �14�

where the integration constant is already accounted for by
the prefactor A in Eq. �10�. For the slow mode S�q�
=S�s��q�=0.

In the subleading O�1� order, Eq. �11� yields a first-order
differential equation for S1�q�,

�
r

wre
rp
rS1� −

r2

2
p� −

rwr�

wr
� + ur�erp − 1� = 0, �15�

where p= pa�q� for the fast mode, and p=0 for the slow
mode. It is convenient to use the identities
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Hq = �
r

wr��q��erp − 1�, Hp = �
r

rwr�q�erp,

Hqq = �
r

wr��q��erp − 1�, Hpp = �
r

r2wr�q�erp,

Hqp = �
r

rwr��q�erp, �16�

where the subscripts p and q stand for the partial derivatives.
To remind the reader, all the rates in Eqs. �16� are rescaled
with respect to the linear decay rate constant �. The fast-
mode solution for S1�q� can be written as

S1
�f��q� = �q

d�

�

Hqp��,pa� +
1

2
Hpp��,pa�pa���� − �

r

ur����erpa − 1�

Hp��,pa�
,

�17�

where pa= pa���. This result was obtained by Escudero and
Kamenev �22� in the context of stochastic population
switches. The quantity Hp�� , pa� in the denominator of the
integrand in Eq. �17� vanishes in every fixed point �=qi of
the rate equation, including �=0. To see how the integrand
behaves at the fixed points, consider the equation
H�q , pa�q��=0 for the activation trajectory. Differentiating it
with respect to q, we obtain

Hq�q,pa�q�� + Hp�q,pa�q��pa��q� = 0. �18�

One more differentiation gives

Hqq + Hppa� + �2Hpq + Hpppa��pa� = 0, �19�

evaluated at p= pa�q�. By virtue of identities �16� each of the
first two terms of Eq. �19� vanishes at q=qi and p= pa�qi�
=0, so the expression 2Hpq+Hpppa� must also vanish there.
As a result, the first two terms in the numerator of the inte-
grand of Eq. �17� cancel each other at �=qi. The remaining
term in the numerator, −�rur����erpa���−1�, is proportional to
��−qi� in the vicinity of �=qi, exactly as the quantity
Hp�� , pa� in the denominator. Therefore, the integrand is well
behaved at �=qi�0. At q=0, S1

�f��q� diverges logarithmi-
cally, see below. This divergence does not cause any con-
cern, as the WKB approximation �which demands n�1, or
q�N−1, for its validity� does not hold for small q anyway.

One can partially perform the integration over q in Eq.
�17� by using Eqs. �18� and �19�. After some algebra

S1
�f��q� = − ln��S��q�� + ��q� , �20�

where

��q� = �q	 Hqq��,pa�
2Hq��,pa�

−

�
r

ur����erpa − 1�

Hp��,pa�
�d� , �21�

and S��q�� pa��q�. Note that S��q� does not vanish in any of
the nontrivial fixed points qi, so the logarithmic term in Eq.

�20� is well behaved there �24�. Indeed, from Eq. �18�
S��q�= pa��q�=−Hq�q , pa�q�� /Hp�q , pa�q��. By Taylor ex-
panding the numerator and denominator in the vicinity of
any nontrivial fixed point qi, one can see that S��qi��0.

Therefore, the general fast-mode solution is given by Eq.
�10� with S�f��q� from Eq. �14�, and S1

�f��q� from Eqs. �20�
and �21�. It also includes a constant prefactor A=Af which
can be found immediately. Indeed, at N�1 the QSD is
strongly peaked around the attracting fixed point q=q�. Here
the fast-mode solution dominates, and Af can be found by
normalizing to unity the Gaussian asymptote of the QSD
around q=q�. The Gaussian asymptote is obtained by ex-
panding the QSD �Eq. �10�� in the vicinity of q=q�,

��q� � Afe
−NS�f��q��−S1

�f��q��−�N/2�S��q���q − q��2
, �22�

where we have used the equalities S��q��= pa�q��=0. To see
that S��q���0, one can again use Eq. �19�. At q=q� it reads
2Hpq�q� ,0�+Hpp�q� ,0�pa��q��=0. By virtue of Eq. �16�
Hpp�q� ,0��0. The quantity Hpq�q� ,0� is the q derivative,
evaluated at q=q�, of the expression in the right-hand side of
the rate equation �13�. As the point q=q� is by assumption
attracting, Hpq�q� ,0��0. Therefore, pa��q��=S��q���0, and
the asymptote �22� is indeed a Gaussian distribution. Nor-
malizing it to unity, we obtain

Af =�S��q��
2�N

eNS�f��q��+S1
�f��q��, �23�

so the fast-mode solution is fully determined,

��q� =�S��q��
2�N

eN�S�f��q��−S�f��q��+S1
�f��q��−S1

�f��q�, �24�

with S�f��q� from Eq. �14� and S1
�f��q� from Eqs. �20� and

�21�.
Now consider the slow-mode solution for which S�s��q�

=0. The subleading-order contribution S1
�s��q� is found by

putting p=0 in Eq. �17�,

S1
�s��q� = �q

d�
Hpq��,0�
Hp��,0�

= ln Hp�q,0� . �25�

Then Eq. �10� yields the general slow-mode solution for the
QSD �21,22�,

�s�q� = −
As

Hp�q,0�
, �26�

where As is an arbitrary constant. The minus sign is put here
for convenience, because in the region of 0�q�q1, where
the slow-mode solution is relevant �see Sec. V�, q̇
=Hp�q ,0��0 and As�0. One can see from Eq. �26� that the
slow-mode solution diverges in the fixed points of the rate
equation �21�. This divergence will be cured in Sec. V.

We show in the following that, for a given extinction sce-
nario and in a given region of q, only one of the modes,
either fast or slow, dominates the resulting QSD, while the
other one must be discarded. Before we deal with this issue,
however, we recall that the WKB approximation breaks
down at n=O�1�. To find the QSD for all n we will solve Eq.
�7� in the region of n�N by recursion and then match the
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recursive solution with either the fast mode �in scenario A�,
or the slow mode �in scenario B� WKB solution in the joint
region of their validity.

III. RECURSIVE SOLUTION

The objective of this section is to approximately solve Eq.
�7� at sufficiently small n. The exact criterion of smallness
will appear later, when we match different solutions in joint
regions of their validity.

In the leading order in N we take Wr�n�=Nwr�n /N�, see
Eq. �9�, and expand it in n /N up to the linear term: Wr�n�
�Nwr�0�+nwr��0�=nwr��0�. Then Eq. �7� becomes

�
r

wr��0���n − r��n−r − n�n� = 0, �27�

where only processes with wr��0��0 contribute. One can
look for particular solutions of this recursive equation in the
form �n= fn /n thus arriving at an equation with
n-independent coefficients,

�
r

wr��0��fn−r − fn� = 0. �28�

In the remainder of this paper we make the following sim-
plifying assumption:

w−2� �0� = w−3� �0� = ¯ = 0. �29�

That is, we assume that the rates of the multistep loss pro-
cesses n→n−m, where m=2,3 , . . ., do not have, in the lead-
ing order in N, linear terms in their Taylor expansion in n.
This assumption is always satisfied for stochastic chemical
reactions �where pairs, triplets,…, of reacting particles are
needed to bring down the number of particles by 2,3,…�. The
conditions �29� also hold for all models of population biol-
ogy and epidemiology we are aware of.

Using Eq. �29� and the equality w−1� �0�=1 �to remind the
reader, we are using rescaled variables�, we rewrite the re-
cursive equation �28� as

fn+1 = 	1 + �
r=1

K

wr��0�� fn − �
r=1

K

wr��0�fn−r, �30�

where K�rmax�N. If there is no degeneracy, the general
solution of Eq. �30� is a linear combination of all particular
solutions fn=	−n, where 	 obeys the characteristic polyno-
mial equation of degree K+1,

�
r=1

K

wr��0�	r+1 − 	1 + �
r=1

K

wr��0��	 + 1 = 0. �31�

Note, that 	=	0=1 is always a root. Let us show that Eq.
�31� has one and only one additional positive root, 	1, while
all others roots 	2 ,	3 , . . . ,	K are either negative or complex.
First, we establish a connection between the roots 	i of Eq.
�31� and the crossing points with the p axis of the zero-
energy trajectories of the WKB Hamiltonian �12�. By ex-
panding wr�q→0��wr��0�q, Eq. �12� becomes

�
r

wr��0��erp − 1� = 0, �32�

where only terms with wr��0��0 contribute. Putting ep=	
and w−1� �0�=1 and using Eq. �29�, one can see that Eq. �32�
coincides with Eq. �31�. As we have shown that the equation
H�q , p�=0 has, for any q, two and only two real solutions for
p �23�, Eq. �31� also has two and only two real solutions for
	, both of them positive. The roots 	0=1 and 	1 correspond
to the crossing points with the p axis of the slow and fast
modes, respectively.

Dividing Eq. �31� by 1−	, we arrive at a polynomial
equation of degree K,

1 − �
r=1

K

wr��0��	 + ¯ + 	r� = 0. �33�

For K�4 the roots of this polynomial can be expressed in
radicals. For K�5, they need to be computed numerically.
Assume that we have found all of the roots of Eq. �33� 	i,
i=1,2 , . . . ,K. If there is no degeneracy, the general solution
for fn is

fn = �
i=0

K

Ci	i
−n = C0 + �

i=1

K

Ci	i
−n, �34�

where the coefficients Ci are the following �see Appendix A
for the derivation�:

Ci =

�− 1�Kf1�
j=1

K

	 j

�
j=0

j�i

K

�	i − 	 j�

. �35�

The coefficient C0, corresponding to the root 	0=1, can be
expressed through the coefficients wr��0�, r=1,2 , . . . ,K �see
Appendix A�,

C0 =
f1

1 − w1��0� − 2w2��0� − ¯ − KwK� �0�
. �36�

Before writing down the general solution of the recursive
equation �27� for the QSD, we recall a simple relation �25�
between f1 and the MTE �. Using the rescaled reaction rates,
we can rewrite Eq. �8� as

�−1 = ��
r�0

Wr�− r��−r.

In view of the conditions �29�, only one term in the sum
survives in the leading order. As w−1� �0�=1, we obtain

�−1 = �W−1�1��1 � ��1 = �f1,

so f1�1 / ����. Now we switch to the rescaled variable q
=n /N, use the relation ��q�= fn / �Nq� and Eq. �34�, and ob-
tain the small-q asymptote of ��q�,
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��q� =

�− 1�K�
j=1

K

	 j

��Nq
�
i=0

K
	i

−Nq

�
j=0

j�i

K

�	i − 	 j�

. �37�

The validity region of this asymptote �which includes the yet
unknown � to be found later� is scenario-dependent. It is a
relatively narrow region q�N−1/2 in scenario A, and a
broader region q�1 in scenario B. The difference comes
from the fact that in scenario A the recursive solution needs
to be matched, at n�1, with a rapidly growing fast-mode
solution, whereas in scenario B the matching needs to be
done with a slowly varying slow-mode solution, see Secs. IV
and V, respectively.

What is the role of complex roots of the polynomial equa-
tion �33� in the recursive solution �37�? These can appear
only for K�3, and they come in complex conjugate pairs: 	 j

and 	k=	 j
¯ . One can show, by using Eq. �35�, that the coef-

ficients Cj and Ck, corresponding to 	 j and 	 j
¯ , are also com-

plex conjugate: Ck=Cj
¯ , so that ��q� from Eq. �37� is real

valued as expected. When complex roots are present, the
QSD at small n may exhibit rapidly decaying oscillations as
a function of n.

Let us now determine the n�1, or q�N−1, asymptote of
the QSD �Eq. �37��, in each of the two extinction scenarios.
This asymptote will be matched, in each scenario, with the
dominant WKB mode. Equation �37� includes K+1 terms. At
n�1 the leading contribution comes from the term with the
smallest �	i�. The rest of the terms are exponentially small
compared to the leading one and can be safely neglected.

In scenario A, the two positive roots of Eq. �31� are 0
�	1�1 and 	0=1, whereas the rest of the �negative or com-
plex� roots obey the inequality �	i�1��	1, see Appendix B.
In this case the asymptote of the recursive solution �37� at
n�1, or q�N−1, is

��q� �
A1	1

−Nq

��Nq
, �38�

where the positive constant A1 �see Appendix B� satisfies

A1 =

�− 1�K�
j=1

K

	 j

�
j=0

j�1

K

�	1 − 	 j�

. �39�

In this case 	1=epf corresponds, in the WKB language, to the
pf �0 crossing point of the activation trajectory and the p
axis, see Fig. 2. Therefore, to set the ground for matching Eq.
�38� with the WKB solution in scenario A, we can rewrite
Eq. �38� as

��q� �
A1

��N

e−Npfq

q
. �40�

In scenario B the n�1 asymptote of Eq. �37� is quite differ-
ent. Here the root of Eq. �31� with the smallest absolute
value is 	0=1, see Appendix C. Therefore, the i=0 term in
Eq. �37� is dominant, and we obtain

��q� �
1

��Nq�1 − w1��0� − 2w2��0� − ¯ − KwK� �0��
,

�41�

where we have used Eqs. �35� and �36�. The asymptote �41�
can be expressed in terms of the WKB Hamiltonian �12�.
Using Eq. �16�, we obtain Hqp�0,0�=�rrwr��0�. Recalling
that w−1� �0�=1 and using Eq. �29�, we can rewrite Hqp�0,0�
as

Hqp�0,0� = KwK� �0� + �K − 1�wK−1� �0� + ¯ + w1��0� − 1.

�42�

As q=0 is an attracting point here, Hqp�0,0��0. Then, using
Eq. �42�, the asymptote �41� becomes

��q� �
1

��N�Hqp�0,0��q
. �43�

Note that 	0=1=eps corresponds to the zero-momentum �ps
=0� crossing point of the relaxation trajectory and the p axis,
see Fig. 3.

IV. EXTINCTION SCENARIO A

A. General case: multistep processes

In this section we calculate the MTE and QSD for extinc-
tion scenario A. Here extinction occurs along the activation
trajectory: the heteroclinic trajectory, connecting the meta-
stable point �n1 ,0� and the fluctuational extinction point
�0, pf� of the phase plane �n , p�, see Fig. 2. In this case the
slow-mode solution is negligible compared to the fast-mode
solution in the entire region of q�0. Furthermore, the fast-
mode solution �24� can be directly matched with the recur-
sive solution �37� in the joint region of their validity which
turns out to be 1�n�N1/2, or N−1�q�N−1/2.

To implement the matching procedure, we first find the
q�N−1/2 asymptote of the fast-mode solution �24�. Because
of the divergence of S1

�f��q� at q=0, we should proceed with
care. Let us rewrite Eq. �24� as

��q� =
�S��q1�
�2�Nq

eN�S�f��q1�−S�f��q��+S1
�f��q1�−�S1

�f��q�−ln q�. �44�

Here we have introduced the 1 /q prefactor which diverges at
q=0, and made up for it by adding ln q in the exponent. Let
us show that the expression S1

�f��q�−ln q in the exponent is
regular at q=0. We represent ln q as �qd� /� and use Eq. �17�
to rewrite S1

�f��q�−ln q as an integral over �. Now we Taylor
expand the integrand
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Hpq��,pa� +
1

2
Hpp��,pa�pa���� − �

r

ur����erpa − 1�

Hp��,pa�
−

1

�

in the vicinity of �=0 up to linear terms. The divergent terms
cancel out, and the remaining expression

�1/2�Hppq�0,pf�pa��0� − �
r

ur��0��erpf − 1�

Hpq�0,pf�
, �45�

is finite. Now we rewrite Eq. �44� as

��q� =
�S��q1�
�2�N

q1

q
eN�S�f��q1�−S�f��q��+��q1�−��q�, �46�

where

��q� = S1
�f��q� − ln q �47�

is regular at q=0. By Taylor expanding the exponent of Eq.
�46� around q=0 to first order, we obtain the q�N−1/2 as-
ymptote of the fast-mode solution,

��q� �
�S��q1�
�2�N

q1

q
e−NqpfeN�S�f��q1�−S�f��0��+��q1�−��0�. �48�

This asymptote can be matched with the asymptote of the
recursive solution at N−1�q�N−1/2, given by Eq. �40�. This
matching yields

� =
A1

�2�

�q1
�NS��q1�

eN�S�f��0�−S�f��q1��+��0�−��q1�, �49�

where ��q� is given by Eq. �47�, � is the linear decay rate
constant in physical units, and A1 is given by Eq. �39� �26�.
The general expression �49� for the MTE in scenario A is one
of the main results of this work. The leading term in the
exponent, proportional to N, is the effective entropy barrier
to extinction. The proportionality factor is the absolute value
of the area under the activation trajectory, see an example in
Fig. 2 �13�. Noticeable is the presence of the large factor N1/2

in the pre-exponent. The constant A1 has a clearly non-WKB
nature, as it comes from the recursive solution of the quasis-
tationary master equation at small n and is contributed to by
all of the roots 	i, i=0,1 , . . . ,K.

Another important result is the QSD in extinction scenario
A. It is determined by the asymptotes �24� and �37� which
coincide, in the leading order, in their joint region of validity
N−1�q�N−1/2, or 1�n�N1/2.

B. Single-step processes

Remaining within scenario A, we now turn to an impor-
tant subclass of stochastic population processes: single-step
processes. Here there are only two nonzero process rates:
W�1�Nq��W��Nq�=Nw��q�+u��q�+¯, where all the
rates are normalized by the linear decay rate constant w−��0�.
In this case the expressions for the MTE and QSD can be
simplified considerably. The WKB Hamiltonian �12� be-
comes

H�q,p� = w+�q��ep − 1� + w−�q��e−p − 1� . �50�

The rate equation is q̇=w+�q�−w−�q�. In scenario A one has
w+��0��w−��0�=1. Here it is convenient to denote the ratio of
the linear birth and death rates by R�w+��0� /w−��0�=w+��0�.
For R�1 the fixed point q=0 of the rate equation is repel-
ling. The activation trajectory is pa�q�=−ln�w+�q� /w−�q��,
and

S�f��q� = − �q

ln
w+���
w−���

d� . �51�

Now we calculate the following quantities on the activation
trajectory:

pa��q� = S��q� =
w−�

w−
−

w+�

w+
, Hp�q,pa� = w− − w+,

Hpq�q,pa� =
w−w+�

w+
−

w+w−�

w−
, Hpp�q,pa� = w− + w+,

�
r

ur�erpa − 1� = u+
w−

w+
− 1� + u−
w+

w−
− 1� . �52�

Substituting these into Eq. �17�, we obtain after simplifica-
tions

S1
�f��q� = �q 
 u−

w−
−

u+

w+
�d� +

1

2
ln�w+�q�w−�q�� . �53�

Plugging this into Eq. �47� yields

��q� = �q 
 u−

w−
−

u+

w+
�d� +

1

2
ln	w+�q�w−�q�

q2 � . �54�

Now we can calculate e��0�−��q1� which enters Eqs. �48� and
�49�,

e��0�−��q1� =
q1

�R

w+�q1�
exp	�

0

q1 
 u+

w+
−

u−

w−
�dq� , �55�

where we have used the following relations: �i� as q→0,
w+�q�w−�q� /q2→w+��0�w−��0�=R, �ii� w+�q1�=w−�q1� �as q1
is a fixed point of the rate equation�, and �iii� w−��0�=1 be-
cause of the rescaling of the rates.

Now we turn to the recursive solution at small n, pre-
sented in Sec. III. For single-step processes K=1, and so Eq.
�31� has only two roots: 	0=1 and 	1=1 /w+��0�=1 /R. There-
fore, rewriting the small-q asymptote �37� of the QSD in
terms of n, we obtain

�n =
�Rn − 1�f1

�R − 1�n
, �56�

whereas the constant A1 from Eq. �39� is 1 / �R−1�. Plugging
this constant and Eqs. �51� and �55� in Eq. �49� for the MTE,
we obtain
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� =
�2�R e�0

q1�u+/w+−u−/w−�dq

��R − 1�w+�q1��NS��q1�
eN�0

q1ln�w+/w−�dq. �57�

In the particular case u+=u−=0 Eq. �57� coincides with Eq.
�19� of Ref. �18�, obtained, via a saddle-point approximation,
from the exact expression for the MTE of a single-step pro-
cess. Doering et al. assumed in their derivation that the sub-
leading contributions u� to the process rates W�1�n�, see Eq.
�9�, vanish. As a result, the factor exp��0

q1�u+ /w+
−u− /w−�dq� is absent from their Eq. �19�. While the assump-
tion u+=u−=0 may hold in some simple models, it does not
hold in general. For example, it does not hold for stochastic
chemical reactions where the rates are combinatorial, as in
one of the examples we present in Sec. IV D below.

C. Extinction near transcritical bifurcation point

Now let us return to a general set of �not necessarily
single-step� processes. Our objective is to simplify the MTE
�49� in the special regime when the population, as described
by the rate equation, is very close to the characteristic �tran-
scritical� bifurcation point of scenario A. Here the attracting
point q=q1 is very close to the repelling point q=0, so that
q1�1. This also implies �pf��1 �14,27�. Taylor expanding
Eq. �12� in q and p around q= p=0, we obtain

H�q,p� � qp�
r
	rwr��0� +

q

2
rwr��0� +

p

2
r2wr��0�� = 0.

�58�

The trivial solutions are the extinction line q=0 and the re-
laxation trajectory p=0, whereas the nontrivial solution
yields a straight-line activation trajectory. Using Eq. �16� and
expanding the algebraic equations Hp�q ,0�=0 for q1, and
Hq�0, p�=0 for pf at small q and p, we can represent the
activation trajectory as

pa�q� = − pf
 q

q1
− 1� . �59�

Here

q1 = −
2Hqp�0,0�
Hqqp�0,0�

, �60�

where Hqqp�0,0��0, and

pf = −
2Hqp�0,0�
Hqpp�0,0�

, �61�

where Hqpp�0,0��0. Exactly at the bifurcation the rate con-
stants are such that Hqp�0,0�=0. Here the attracting fixed
point q1 merges with the repelling point q=0. The coordinate
of the attracting fixed point q1�� can serve here as the dis-
tance to the bifurcation. �The third derivatives of the Hamil-
tonian, which appear in the denominators of Eqs. �60� and
�61�, are generically of order unity.�

Now, using Eq. �59�, we can calculate S��q1�= pa��q1�
=−pf /q1=−pf /��0, the fast-mode action

S�f��q� = �q

pa���d� = pfq −
pf

�

q2

2
, �62�

and the accumulated action between the points q=q1=� and
q=0

�S = S�f��0� − S�f��q1� = −
pfq1

2
= −

pf�

2
� 0. �63�

This quantity is the area of a triangle �14�, see Fig. 4.
To find the fast-mode correction to the action, S1

�f��q�, we
expand Eq. �15� in the vicinity of q=0 and p=0, keeping
only the leading order terms. This yields

�qS1��q� − 1��
r

rwr��0� � 0, �64�

whereas the subleading terms ur in the rate expansion do not
contribute. The solution of this equation is S1

�f��q�=ln q.
Then, by virtue of Eq. �47�, we obtain ��q�=0. That is, near
the bifuraction, the subleading WKB correction vanishes.

Now let us consider the coefficient A1 �see Eq. �39��
which enters Eq. �49�. Among the roots 	i of the polynomial
�Eq. �31��, which contribute to A1, two are special: 	0=1 and
	1=epf. Near the bifurcation �pf��1, so we can write 	1

�1+ pf �1. As a result, A1= Ã1 / pf. where

Ã1 =

�− 1�K�
j=2

K

	 j

�
j=2

K

�1 − 	 j�

�65�

is a negative constant of order unity, and we have put 	1

=1 in the expression for Ã1. Furthermore, the roots
	2 ,	3 , . . . ,	K of the polynomial �Eq. �33�� can be evaluated

at the bifurcation point. As a result, one can express Ã1 via
the linear branching rates wr��0�. After some algebra

q1�∆

p f

0

0

q

p

FIG. 4. �Color online� Shown are typical zero-energy trajecto-
ries of the WKB Hamiltonian �12� in scenario A, close to the bifur-
cation where q1=��1, and pf �1. Here, the activation trajectory is
a straight line, and �S given by Eq. �63� is the area of the shaded
triangle.
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Ã1 = − 2	�
r=1

K

r�r + 1�wr��0��−1

. �66�

Substituting all of the above into Eq. �49�, we obtain the
MTE close to the bifurcation point,

� =�2�

N

�Ã1�
�DA

3�2exp
NDA
2�2

2
� , �67�

where Ã1 and DA=��Hqqp�0,0�� /Hqpp�0,0�=O�1� should be
evaluated at the bifurcation. Equation �67� is valid when
N�2�1. For sufficiently large N this strong inequality is
compatible with the strong inequality ��1 which describes

closeness to the bifurcation. Note that the constant Ã1
=O�1� is determined by the full small-n recursive solution
that we found in Sec. III.

Although Eq. �79� breaks down at ��N−1/2, one can still
predict a scaling relation for the MTE in this region: �
�N1/2 /�. The symbol �, here and in the following, means
“of the same order as.”

D. Examples

We will now illustrate our theory by calculating the MTE
in four pedagogical examples of extinction scenario A. The
first three of them are single-step processes: the logistic Ver-
hulst model of population dynamics, a set of three chemical
reactions, and the SIS model of epidemics. The fourth
example—another set of three chemical reactions—involves
a two-step process. We will also consider all of these ex-
amples near the bifurcation.

1. Verhulst model

The generalized Verhulst model is a stochastic logistic
model: a single-step Markov process with birth and death
rates

W+1 � W+ = �1n − �2n2,

W−1 � W− = �1n + �2n2, �68�

respectively, where �1 ,�2 ,�1 and �2 are non-negative rate
constants. The quadratic corrections account for competition
for resources �28�. It is customary to put �2=0 in Eq. �68�
�18�, and this is what we will do here. Rescaling time by the
linear death rate constant �1, we bring the rates to the form
given by Eq. �9�: W+=Bn and W−=n+Bn2 /N, where B
=�1 /�1 is the ratio of the linear birth and death rates, and
N=B�1 /�2. According to Eq. �9� w+=Bq, w−=q+Bq2, and
u+=u−=0. At B�1 the fixed point q=0 of the rate equation
is repelling, whereas q1=1−1 /B�0 is attracting. Here we
have S��q1�= pa��q1�=1, A1=1 / �B−1� and

�
0

q1

ln
w−

w+
dq =

1 − B + ln B

B
.

Therefore, the MTE �Eq. �57�� in physical time units is

� =
1

�1
�2�

N

�B

�B − 1�2exp	N
B − 1 − ln B

B
�� , �69�

which coincides with previous results obtained by different
methods �18,28�.

In this simple example the process rates satisfied the con-
ditions u+=u−=0, so Eq. �69� could have been obtained from
Eq. �19� of Ref. �18�. In the next example we relax one of the
two conditions and show that, as predicted by our more gen-
eral Eq. �57�, the pre-exponent of the MTE changes.

2. Reactions Ao2A and A\0

Consider a set of three reactions among particles A:

branching A→
	

2A, a reverse reaction 2A→
�

A, and decay

A→



0” . As observed in Ref. �27�, this set of reactions can be
viewed as a generalization of the Verhulst model considered
in the previous example. Indeed, by imposing a special rela-
tion, �=2�
−1�, between the rate constants, and by denot-
ing 
=1+B /N and 	=B, one recovers the process rates w�

and u� of the Verhulst model. For this special choice of rate
constants one has u+=u−=0 which yields Eq. �69� for the
MTE. Now, what if the rate constants � and 
 are indepen-
dent? As usual, we can normalize time and the reaction rates

by 
 and denote B̃=	 /
 and Ñ=2	 /�. By virtue of Eq. �9�
we can write w+= B̃q, w−=q+ B̃q2, u+=0 and u−= B̃q. The
rescaled rate constants are identical to those of the Verhulst
model, except that u− is now nonzero. As a result,

exp��0
q1�u+ /w+−u− /w−�dq�= B̃, and Eq. �57� for the MTE

yields

� =���




	

�	 − 
�2exp	 2

�

	 − 
 + 
 ln




	
�� , �70�

where we have returned to physical units. This result cannot
be obtained from Eq. �19� of Ref. �18�.

3. SIS model

Now let us consider the well-known SIS model of epi-
demics, see e.g., Refs. �28,29� and references therein. The
SIS model deals with dynamics of a population which con-
sists of two groups of individuals: susceptible to infection
and infected. It is assumed that infection does not confer any
long-lasting immunity, and infected individuals become sus-
ceptible again after infection. When demography �births and
deaths� is negligible, the total number N of individuals in the
two groups is conserved. As a result, the model becomes
effectively single population, with the effective rates

W+ = 	n�N − n�, W− = 
n .

Mathematically, this model is just another example of the
generalized Verhulst model, see Eq. �68�, where one chooses
�1�0 but �2=0 �28�.

Let us denote R0=	N /
 and rescale time and rates by the
linear decay rate constant 
=	N /R0. The rescaled rates be-
come w+=R0�q−q2� and w−=q, while u+=u−=0. The fixed
point q1=1−1 /R0 of the rate equation is attracting when
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R0�1. Furthermore, S��q1�= pa��q1�=R0, and A1=1 / �R0−1�
�as in the above notation R=R0�. Finally,

�
0

q1

ln
w−

w+
dq = 1 −

1

R0
− ln R0.

Therefore, the MTE �Eq. �57��, in physical time units, is
given by

� =
1



�2�

N

R0

�R0 − 1�2exp	N
ln R0 +
1

R0
− 1�� , �71�

which coincides with previous results obtained by different
methods �28–30�.

4. Branching-annihilation-decay

Now we consider another set of stochastic reactions
among particles A which include, in addition to single-step

processes A→
	

2A and A→



0, a two-step process: binary anni-

hilation 2A→
�

0” . This problem was previously solved by
Kessler and Shnerb �16�. Here we show that their result for
the MTE follows from our Eq. �49�.

In our notation, the transition rates between the states n
and n+r are given by

W1 = 	n, W−1 = 
n, and W−2 =
�n�n − 1�

2
. �72�

Rescaling time 
t→ t and denoting R0=	 /
 and N=	 /�,
we obtain Eq. �9� with

w1 = R0q, w−1 = q, w−2 =
R0q2

2
,

u1 = 0, u−1 = 0, u−2 = −
R0q

2
. �73�

In the rescaled notation, the attracting fixed point is q1=1
−1 /R0 which demands R0�1. The WKB Hamiltonian �12�
takes the form

H�q,p� = R0q�ep − 1� + q�e−p − 1� +
R0q2

2
�e−2p − 1� .

�74�

Solving the equation H�q , pa�q��=0, we obtain the activation
trajectory

pa�q� = S��q� = ln
u + v
4R0

� , �75�

where u=2+qR0 and v=�u2+8qR0
2. The zero-energy phase

trajectories of this system are shown in Fig. 2.
Now we use Eqs. �14�, �17�, and �47� and obtain

�S = S�f��0� − S�f��q1� = 2�1 −
1

R0
+ 
1 +

1

R0
�

�ln	1

2

1 +

1

R0
��� �76�

and

e��0�−��q1� =
2R0

��R0 + 1��3R0 − 1�
. �77�

Furthermore, S��q1�=2R0 / �3R0−1� and, as in the previous
examples, the only root of Eq. �33� is 	1=1 /R0. Therefore,
by using Eq. �39�, we have A1=1 / �R0−1�. Substituting all of
the above into Eq. �49�, we obtain, in physical time units,

� =
2��


�N

R0
3/2

�R0 − 1�2�R0 + 1�1/2eN�S �78�

which coincides with the result of Ref. �16�.

5. Examples 1–4 near the bifurcation point

Because of their simplicity the examples 1–4, presented
above, give identical results for the MTE near their corre-
sponding bifurcation points, described by the equation
Hqp�0,0�=0. The small distance to the bifurcation � in all
these examples is the ratio of the linear birth and death rates
minus 1: B−1 in example 1, 	 /
−1 in example 2, and R0
−1 in examples 3 and 4. In all four examples DA

=��Hqqp�0,0�� /Hqpp�0,0�=1. As there is only one linear
branching process in each example, one has K=1, so Eq.

�66� yields Ã1=−1. As a result, in all four examples

� =
�2�

��N�2
exp
N�2

2
� , �79�

where � denotes, in each example, the linear decay rate con-
stant. To remind the reader, Eq. �79� is valid when N�2�1
which, together with ��1, yields the double inequality
N−1/2���1. At ��N−1/2 Eq. �79� predicts the following
scaling relation for the MTE: ��N1/2 /�, in agreement with
Ref. �28�.

V. EXTINCTION SCENARIO B

A. General case: multistep processes

In this section we calculate the MTE and QSD for extinc-
tion scenario B. Here extinction occurs along a trajectory
composed of two segments: the nonzero-momentum hetero-
clinic trajectory connecting the hyperbolic fixed points
�n2 ,0� and �n1 ,0� �the activation trajectory�, and the zero-
momentum segment going from n=n1 to n=0 �the relaxation
trajectory�, see Fig. 3.

A straightforward way to calculate the MTE starts with
finding the WKB solution for the QSD at n�1. Then one
should match it with the small-n recursive solution �37�, as in
scenario A. The matching region in this case is 1�n�N, or
N−1�q�1. After having found the QSD, one can determine
the MTE by using Eq. �43�.
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Actually, there is a shortcut to finding the MTE which
does not require the knowledge of the small-n recursive so-
lution. This is because the solution includes a constant prob-
ability current flowing from a close vicinity of n=n1 to a
close vicinity of n=0, as shown below. This probability cur-
rent is equal to the escape rate from the metastable state q
=q2, and it is determined by the WKB asymptote of the
QSD, with no use of the small-n recursive solution. One of
the objectives of our work, however, is to also find the QSD
of the metastable state, and therefore we will follow the
straightforward way.

In contrast to scenario A, where the WKB solution is de-
termined solely by the fast mode, in scenario B the WKB
solution is more complicated. Here the fast mode dominates
to the right of the point q=q1 �but not too close to q1�,
whereas the slow-mode solution �26� dominates at 0�q
�q1 �again, not too close to q=q1�. Furthermore, the slow-
mode solution diverges at q=q1, and curing this divergence
demands going beyond the WKB approximation in a bound-
ary layer �q−q1��1 where the fast and slow modes are
strongly coupled. As a result, the QSD at n�1 involves three
distinct asymptotes which need to be matched to one another.
All this is very similar to what happens in other types of
population escape problems: to an absorbing state at infinite
population size �21� or to another metastable state �22�.
Much of the calculation is very similar to that of Refs.
�21,22�, but we will present it here for completeness.

In the boundary layer �q−q1��1 the momentum p is
small, that is fluctuations are weak. Here we can apply the
van Kampen system size expansion �5� to the quasistationary
master equation �7�. Let us denote f�q�=Wr�q���q�
�Nwr�q���q� �it suffices to keep only the leading term in
Eq. �9��. Taylor expanding f�q−r /N� around r=0, we obtain

f�q − r/N� � f�q� −
r

N
f��q� +

r2

2N2 f��q� . �80�

Plugging Eq. �80� into Eq. �7� and integrating once, we ob-
tain

�
r

−
r

N
f�q� +

r2

2N2 f��q� = J̃ , �81�

where J̃=const. Now,

f��q� = N����q�wr�q� + ��q�wr��q�� ,

but ���q��N��q�, so the second term in f��q� is negligible.
Therefore, we obtain

− ��q��
r

rwr�q� + ���q��
r

r2

2N
wr�q� = J̃ . �82�

The first term on the left corresponds to drift, the second one
to diffusion. With the diffusion neglected, one obtains a
�slow-mode� solution for ��q� which diverges at fixed points
of the rate equation. The diffusion term cures this divergence
by providing coupling between the slow mode and fast
modes, as observed in Ref. �21�.

Now we use Eq. �16� and evaluate the drift and diffusion
terms in the vicinity of q=q1. In the drift term

�
r

rwr�q� = Hp�q,0� � �q − q1�Hpq�q1,0� ,

while in the diffusion term it suffices to put wr�q��wr�q1�.
Denoting x= �q−q1� / l, and l2=Hpp�q1 ,0� / �NHpq�q1 ,0�� �as
one can check, both Hpp�q1 ,0� and Hpq�q1 ,0� are positive�,
we obtain the boundary-layer equation �21�

���x� − 2x��x� = J , �83�

where the rescaled constant current J is to be found later. The
general solution of Eq. �83� is

��x� = c1ex2
+

�J

2
erf�x� . �84�

where c1 is another constant. Now we can match this solu-
tion to the slow-mode solution at x�0 and �x��1, that is, at
N−1/2�q1−q�1. To eliminate the exponential growth at x
�0, one must choose c1=J�� /2, so the asymptote of the
boundary-layer solution �84� at −x�1 becomes

��x� � −
J

2x
=

J

2�q1 − q�
� Hpp�q1,0�

NHpp�q1,0�
. �85�

The slow-mode solution �26� at q�q1 can be approximated
as

�s�q� = −
As

Hp�q,0�
�

As

�q1 − q�Hpq�q1,0�
. �86�

Matching the two asymptotes, one obtains

J =
2As

�N
�Hpp�q1,0�Hpq�q1,0�

. �87�

To find the still unknown constant As, we have to match the
x�1 asymptote of the boundary-layer solution �84�, which is

��x� � J��ex2
=

2As
��N

�Hpp�q1,0�Hpq�q1,0�

� exp	NHpq�q1,0�
Hpp�q1,0�

�q − q1�2� , �88�

with the asymptote of the fast-mode solution at N−1/2�q
−q1�1, which is

��q� ��S��q2�
2�N

� eN�S�f��q2�−S�f��q1��+S1
�f��q2�−S1

�f��q1�−�N/2�S��q1��q − q1�2
.

�89�

Here we have used the equalities S��q1�= pa�q1�=0 and ne-
glected terms of order q−q1�1 in the exponent. Putting q
=q1 into Eq. �19�, we obtain

pa��q1� = S��q1� = −
2Hpq�q1,0�
Hpp�q1,0�

, �90�

where S��q1��0. Matching the asymptotes �Eqs. �88� and
�89�� and using Eq. �90�, we find
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As =
Hpp�q1,0���S��q1��S��q2�

4�N

� eN�S�f��q2�−S�f��q1��+�S1
�f��q2�−S1

�f��q1��. �91�

What is left is to find the MTE by matching the slow-mode
solution at q�1 with the recursive solution �43� at q�N−1.
Using Eq. �26� we obtain, at q�1,

�s�q� � −
As

qHpq�0,0�
=

As

q�Hpq�0,0��
, �92�

where Hpq�0,0��0 is given by Eq. �42�. Comparing this
with Eq. �43� and using Eq. �91�, we obtain

� = ��NAs�−1 =
4�

�Hpp�q1,0���S��q1��S��q2�

� eN�S�f��q1�−S�f��q2��+�S1
�f��q1�−S1

�f��q2��, �93�

where � in the linear decay rate constant in physical units
�26�. The expression �93� for the MTE in scenario B is an
important result of our work. The leading term in the expo-
nent, proportional to N, is the effective entropy barrier to
extinction. The proportionality factor is the absolute value of
the area between the activation trajectory and relaxation tra-
jectory �14�, see an example in Fig. 3. In contrast to scenario
A, the pre-exponential factors in Eq. �93� are N independent.
Using Eqs. �20�, �21�, and �90�, one can rewrite Eq. �93� in a
more concise form,

� =
2�

�Hpq�q1,0�
eN�S�f��q1�−S�f��q2��+���q1�−��q2��. �94�

As mentioned above, determining the MTE in scenario B
does not require any information about the small-n recursive
solution. Furthermore, Eq. �93� formally coincides with the
result of Escudero and Kamenev �22�, who calculated a dif-
ferent quantity: the mean time to escape from one metastable
state into another. Finally, the same result �93� can be also
obtained for the mean time to escape to an absorbing state at
infinity, as in the particular example considered by Meerson
and Sasorov �21�. The reason for these coincidences is that,
in all these systems, a constant probability current sets in
beyond the repelling fixed point of the rate equation. It is the
magnitude of this current, carried by the slow WKB mode,
rather than the exact nature of the target state for escape �an
absorbing state at zero, infinity or another metastable state�,
that determines, in the leading and subleading orders in N,
the mean escape rate from a metastable state.

To conclude this section, the QSD �another main result of
this work� is given by four overlapping asymptotes: �i� the
recursive solution �37�, valid for 1�n�N, �ii� the slow-
mode WKB solution �26�, valid for n1−n�N1/2 and n�1,
�iii� the boundary-layer solution �84�, valid for �n−n1��n1,
and �iv� the fast-mode WKB solution �24�, valid for n−n1
�N1/2.

B. Single-step processes

For completeness, we briefly consider the special case of
single-step processes, where only W�1�Nq��W��Nq�

=Nw��q�+u��q�+¯ are present. Here Eq. �93� simplifies
considerably. Performing calculations similar to those in sce-
nario A �see Sec. IV� and using Eqs. �16� and �53� and the
fact that w+�q1,2�=w−�q1,2�, one obtains the MTE

� =
2� e�q1

q2�u+/w+−u−/w−�dq

�w+�q2���S��q1��S��q2�
eN�q2

q1ln�w−/w+�dq. �95�

As expected, this result coincides with the single-step result
of Ref. �22� for the mean time of a population switch be-
tween two metastable states.

C. Extinction near saddle-node bifurcation point

Here we calculate the MTE near the characteristic
�saddle-node� bifurcation of scenario B. At the bifurcation,
the nontrivial attracting fixed point q=q2 of the rate equation
merges with the repelling point q=q1. Above but near the
bifurcation point q2−q1�1. As a result, the momentum p on
the activation trajectory is much smaller than unity, see Fig.
5. One can always define the parameter N such that, at the
bifurcation, q1=q2=1. Furthermore, near the bifurcation q1
=1−� and q2=1+�, where the exact definition of ��1 will
appear shortly.

Let us Taylor expand H�q , p� from Eq. �12� in the vicinity
of q=1 and p=0. As we expect pa�q� to be ��q2−q1�2, we
neglect the terms of order �q−1�p2 and higher and arrive at
the following equation for the zero-energy phase trajectories
p= p�q� close to q=1:

H�q,p� � p�
r
	rwr�1� + �q − 1�rwr��1� +

1

2
�q − 1�2rwr��1�

+
1

2
pr2wr�1�� = 0. �96�

As can be checked a posteriori, the terms in Eq. �96� scale as
follows: Hp�1,0���2, Hqp�1,0���2, Hqqp�1,0�=O�1�, and
Hpp�1,0�=O�1�. Therefore, the term �q−1�Hqp�1,0���3

can be neglected. The nontrivial solution of Eq. �96� yields
the activation trajectory p= pa�q�: a parabola with the roots
q=q1 and q=q2. To simplify the notation, we use Eq. �16�
and evaluate the small difference q2−q1 by expanding the
algebraic equation Hp�q ,0�=0 in the vicinity of q=1. Ne-
glecting the term �q−1�Hqp�1,0�, we obtain

q1 q2
0

q

p

FIG. 5. �Color online� Shown are typical zero-energy trajecto-
ries of the WKB Hamiltonian �12� in scenario B, close to the bifur-
cation where q2−q1�1. Here, the activation trajectory is a pa-
rabola, and �S given by Eq. �100� is the area of the shaded region.
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� �
q2 − q1

2
=� 2Hp�1,0�

�Hqqp�1,0��
, �97�

where Hqqp�q1 ,0��0. The activation trajectory can be writ-
ten as

pa�q� =
�Hqqp�1,0��
Hpp�1,0�

�q − q1��q − q2� . �98�

As S��q�= pa��q�, we find S��q2�=−S��q1�
=2�2�Hqqp�1,0�� /Hpp�1,0�. Furthermore, the action S�f��q�
=�qpa���d� is given by

S�f��q� =
�Hqqp�1,0��
Hpp�1,0� 	q3

3
−

q2

2
�q1 + q2� + qq1q2� , �99�

whereas

�S = S�f��q1� − S�f��q2� =
4�Hqqp�1,0��
3Hpp�1,0�

�3 �100�

is the area of the shaded region in Fig. 5.
As in scenario A, the subleading WKB correction van-

ishes near the bifurcation. Indeed, we Taylor expand Eq. �15�
in the vicinity of q=1 and p=0, keep only leading-order
terms, and obtain

�
r

rwr�1�S1��q� −
1

2
r2wr�1��q − 1�pa��1� − rwr��1� � 0.

�101�

Using Eq. �98�, we find that the second and third terms can-
cel out, and so S1

�f��q� can be chosen zero. As a result, Eq.
�93� yields the MTE near the bifurcation,

� =
2�

��Hqqp�1,0���
exp
4

3
NDB

2�3� , �102�

where Hqqp�1,0� and DB=��Hqqp�1,0�� /Hpp�1,0�=O�1�
should be evaluated at the bifurcation. The applicability cri-
terion of this result is N�3�1. For sufficiently large N this
strong inequality is compatible with the strong inequality �
�1 which describes closeness to the bifurcation. At �
�N−1/3 Eq. �102� predicts the following scaling of the MTE
with N: ��N1/3 /�.

We notice that Eq. �102� does not require any information
about the QSD in the region of small n. Indeed, as was
mentioned in Sec. V A, the exact nature of the target state is
of no significance here. Note that the same scaling of the
effective entropy barrier with the distance from the bifurca-
tion appears in the context of escape from one metastable
state to another �12�. Finally, the same scaling near the bi-
furcation is observed in continuous systems, driven by exter-
nal delta-correlated Gaussian noise and therefore describable
by a Fokker-Planck equation �31,32�.

D. Example: reactions 2Ao3A and A\0

Let us illustrate the extinction scenario B on the following

set of reactions: binary reproduction 2A→
	

3A, the reverse

process 3A→
�

2A, and linear decay A→



0. Here

W1 =
	n�n − 1�

2
, W−1 = 
n +

�n�n − 1��n − 2�
6

.

�103�

Rescaling time 
t→ t, and denoting �=1−�2, �2=1
−8�
 / �3	2��0, and N=3	 / �2��, we arrive at Eq. �9� with

w−1 =
q3

�
+ q, w1 =

2q2

�
,

u−1 = −
3q2

�
, u1 = −

2q

�
. �104�

In the rescaled notation the fixed points are q=0 �attracting
point�, q1=1−� �repelling point�, and q2=1+�: another at-
tracting point around which the metastable population re-
sides. The WKB Hamiltonian �12� takes the form

H�q,p� = 
q3

�
+ q��e−p − 1� +

2q2

�
�ep − 1� . �105�

Solving the equation H�q , pa�q��=0 yields

pa�q� = S��q� = ln
q

2
+

�

2q
� . �106�

Therefore,

S��q� =
q2 − �

q2�q + ��
, �107�

S��q1�=−� / �1−��, and S��q2�=� / �1+��. Furthermore, using
Eq. �104� we obtain

�
q2

q1

ln
w−

w+
dq = 2
� − �1 − �2 arctan

�

�1 − �2� �108�

and

exp	− �
q2

q1 
 u+

w+
−

u−

w−
�dq� =�1 + �

1 − �
.

Plugging everything into Eq. �95� yields the MTE in physical
units,

� =
��1 − ��


�
eN�S. �109�

Here

�S = 2
� − �1 − �2 arctan
�

�1 − �2� �110�

is a monotone increasing function of �; its asymptotes are

�S = ��2/3��3 + �4/15��5 + ¯ , � � 1,

2 − ��2�1 − �� + ¯ , 1 − � � 1.
�

Near the bifurcation, ��1, Eq. �109� becomes
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� =
�

��
exp
2

3
N�3� . �111�

This is in agreement with Eq. �102�. Indeed, at the bifurca-
tion one has Hpp�1,0�=4, Hqqp�1,0�=−2, and so DB

2 =1 /2.
Equation �111� is valid when N�3�1. This inequality, com-
bined with ��1, yields the double inequality N−1/3���1.

We compared our analytical result �109� with numerical
solutions of �a truncated� master equation �2� with rates
�103� at N=200 and different values of �. The comparison is
presented in Fig. 6. Very good agreement is observed for not
too small �, when the effective entropy barrier N�S is suffi-
ciently high.

To determine the QSD in this example, one needs to find
S�f��q� and S1

�f��q� from Eqs. �14� and �17�,

S�f��q� = 2�� arctan
 q
��

� + q	ln
� + q2

2q
� − 1� ,

S1
�f��q� = − ln
� + q2

q5/2 � . �112�

Then Eqs. �24�, �26�, �37�, and �84� yield the QSD in terms
of four overlapping asymptotes. The QSD and its compari-
son with numerics are shown in Fig. 7, and very good agree-
ment is observed.

VI. SUMMARY

This work dealt with extinction of an isolated long-lived
stochastic population describable by a continuous-time Mar-
kov process. We have identified two generic extinction sce-
narios, A and B, based on the stability properties of the fixed
points of the population size dynamics, predicted by the rate
equation. For each of the two scenarios we have calculated
the mean time to extinction �MTE� and the quasistationary
probability distribution �QSD�. The calculations involve a

systematic use of WKB method, where 1 /N, the typical in-
verse population size in the metastable state, serves as a
small parameter of the theory. The WKB theory is supple-
mented by two additional approximations in the regions
where it breaks down. One of them is a small-n expansion of
the quasistationary master equation which brings about a re-
cursion relation �in both scenarios A and B�. The second one
is the Fokker-Planck equation, obtained via the van Kampen
system-size expansion. The latter is valid in small regions
around the nontrivial fixed points of the rate equation �in
scenario B�.

The theory is not limited to single-step stochastic pro-
cesses, although for such processes our general results sim-
plify considerably. The results also simplify near the charac-
teristic bifurcations of scenarios A and B. A number of
previous results for the mean time to extinction follow from
our equations in particular cases.

We have observed that, in models belonging to extinction
scenario B, the mean time to population extinction formally
coincides, in the leading and subleading orders in N, with the
mean time to population escape in stochastic population
models where the metastable population switches to another
metastable state or to an absorbing state at infinity. The rea-
son for this coincidence is that, in all these systems, a con-
stant probability current sets in beyond the repelling fixed
point of the rate equation. It is the magnitude of this current,
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FIG. 6. �Color online� The natural logarithm of the extinction
rate E=1 /� versus � for N=200 for the reactions
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2A. The analytical result �109� �the solid
line� is compared with the quantity −�ln�1− P0

num�t��� / t �the aster-
isks� extracted from a numerical solution of �a truncated� master
equation �2� with rates from Eq. �103�.
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FIG. 7. �Color online� �a�: the QSD �n for �=1 /3 and N=103

for the reactions A→



0, 2A→
	

3A and 3A→
�

2A. The QSD includes
four overlapping asymptotes: the fast-mode solution �FM�, the
slow-mode solution �SM�, the boundary-layer solution �BL�, and
the small-n asymptote. �b� A comparison between the QSD in �a�
�the solid line� and a numerical solution of �a truncated� master
equation �2� with rates from Eq. �103� �the dashed line�.
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rather than the precise nature of the target state for escape,
which determines, in the leading and subleading orders in N,
the mean escape rate from a metastable state.

The situation is quite different in extinction scenario A.
Here the exact nature of the target state �the absorbing state
at n=0� or, more precisely, the rate constants of the effective
linear branching processes at small n, affect the pre-exponent
of the mean time to extinction.
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APPENDIX A

Here we derive Eq. �35� for the arbitrary constants Ci
appearing in Eq. �34�. For that we need to solve the follow-
ing set of K+1 linear equations:

C0 + �
i=1

K

	i
−mCi = fm, m = 1,2, . . . ,K + 1, �A1�

where the constants f2 , f3 , . . . , fK+1 can be expressed via f1
by using the recursive equation �30� with n=1,2 , . . . ,K �as-
suming that f j =0 for j�1�.

As before, we denote the roots of Eq. �31� by
	0 ,	1 , . . . ,	K, where 	0=1, and define the following quanti-
ties:

s0
�0� = 1,

s1
�0� = 	1 + 	2 + 	3 + ¯ + 	K,

s2
�0� = 	1	2 + 	2	3 + 	3	4 + ¯ + 	K−1	K,

s3
�0� = 	1	2	3 + 	1	3	4 + 	1	2	4 + ¯

. . .

sK
�0� = 	1	2 ¯ 	K. �A2�

The superscript �0� means that the K roots which contribute
to si

�0� are all of the roots of Eq. �31� except 	0. In the same
manner we can define for 1� i�K

s0
�i� = 1,

s1
�i� = 1 + 	1 + 	2 + ¯ + 	i−1 + 	i+1 + ¯ + 	K,

s2
�i� = �

0�j�m�K

j,m�i

K

	 j	m

. . .

sK
�i� = 	1	2 ¯ 	i−1	i+1 ¯ 	K, �A3�

where the root 	i does not contribute.
To obtain the coefficient C0 we multiply the first of Eqs.

�A1� by s0
�0�, the second by −s1

�0� , . . ., and finally the last by
�−1�KsK

�0�. By adding the equations we obtain

f1 − s1
�0�f2 + s2

�0�f3 − ¯ + �− 1�KsK
�0�fK+1 = C0�1 − s1

�0�

+ s2
�0� − ¯ + �− 1�KsK

�0�� + C1�	1
−1 − 	1

−2s1
�0�

+ 	1
−3s2

�0� − ¯ + �− 1�K	1
−K−1sK

�0�� + ¯ + CK�	K
−1

− 	K
−2s1

�0� + ¯ + �− 1�K	K
−K−1sK

�0�� . �A4�

By using Eqs. �A2� we can rewrite the coefficient of C0 in
the right hand side of Eq. �A4� as

1 − s1
�0� + s2

�0� − ¯ + �− 1�KsK
�0� = �1 − 	1��1 − 	2� ¯ �1 − 	K� .

�A5�

Furthermore, the coefficient of Ci in Eq. �A4� satisfies

	i
−1 − 	i

−2s1
�0� + 	i

−3s2
�0� − ¯ + �− 1�K	i

−K−1sK
�0�

=
�	i − 	1��	i − 	2� ¯ �	i − 	 j� ¯ �	i − 	K�

	i
K+1 . �A6�

Clearly, this expression vanishes for all i�1. Therefore, Eqs.
�A4� and �A5� yield

C0 =
f1 − s1

�0�f2 + s2
�0�f3 − ¯ + �− 1�KsK

�0�fK+1

�
i=1

K

�1 − 	i�

�A7�

To calculate the numerator of Eq. �A7� we use Viete’s for-
mula. Given a polynomial equation

aKxK + ¯ + a1x + a0 = 0,

whose roots are 	1 ,	2 , . . . ,	K, the expressions si
�0�, given by

Eq. �A2�, satisfy

si
�0� = �− 1�iaK−i

aK
. �A8�

Let us apply this formula to Eq. �33� which has exactly the
roots 	1 ,	2 , . . . ,	K. For convenience, we rewrite Eq. �33� as

1 − 	�
r=1

K

wr��0� − 	2�
r=2

K

wr��0� − ¯ − 	KwK� �0� = 0. �A9�

In terms of the coefficients ai we have a0=1, a1=−�w1��0�
+ ¯+wK� �0��, a2=−�w2��0�+ ¯+wK� �0�� , . . ., and aK=−wK� �0�.
Therefore, using Eqs. �A7� and �A8�, we can rewrite C0 as

C0 =
fK+1 − fK�w1��0� + ¯ + wK� �0�� − ¯ − f1wK� �0�

aK�
i=1

K

�1 − 	i�

.

�A10�

Now, using Eq. �30� with n=K, we obtain a relation between
fK+1 and f j�K. Plugging it into Eq. �A10� we have
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C0 =
1

aK�
i=1

K

�1 − 	i�

�fK − fK−1�w1��0� + ¯ + wK� �0��

− ¯ − f1�wK−1� �0� + wK� �0��� . �A11�

One can use this argument repeatedly K−1 more times, and
obtain that the expression in the curly brackets in Eq. �A11�
equals f1. In addition, by virtue of Eq. �A8� wK� �0� satisfies

wK� �0� = − aK =
�− 1�K+1

	1	2 ¯ 	K
. �A12�

Therefore, C0 is given by

C0 =

�− 1�Kf1�
i=1

K

	i

�
i=1

K

�1 − 	i�

=
f1

�
i=1

K

�1 − 	i
−1�

, �A13�

thereby proving Eq. �35� for i=0.
This proof can be generalized to the rest of the coeffi-

cients Ci. Here one has to multiply the first of Eqs. �A1� by
s0

�i�, the second by −s1
�i� , . . ., and finally the last by �−1�KsK

�i�,
and add all the equations. This yields

f1 − s1
�i�f2 + s2

�i�f3 − ¯ + �− 1�KsK
�i�fK+1 = C0�1 − s1

�i� + s2
�i� − ¯

+ �− 1�KsK
�i�� + C1�	1

−1 − 	1
−2s1

�i� + 	1
−3s2

�i� − ¯

+ �− 1�K	1
−K−1sK

�i�� + ¯ + CK�	K
−1 − 	K

−2s1
�i� + ¯

+ �− 1�K	K
−K−1sK

�i�� . �A14�

The coefficient of Ci in the right hand side of Eq. �A14�
satisfies

	i
−1 − 	i

−2s1
�i� + 	i

−3s2
�i� − ¯ + �− 1�K	i

−K−1sK
�i�

=
�	i − 1��	i − 	1� ¯ �	i − 	i−1��	i − 	i+1� ¯ �	i − 	K�

	i
K+1 ,

�A15�

because 	i is absent from sj
�i�, see Eq. �A3�. On the other

hand, the coefficients of all other Cj�i in the right hand side
of Eq. �A14� can be shown to be equal zero. Therefore,

Ci =
	i

K+1�f1 − s1
�i�f2 + s2

�i�f3 − ¯ + �− 1�KsK
�i�fK+1�

�
j=0

j�i

K

�	i − 	 j�

�A16�

By using the recursive equation �30� repeatedly and by using
Eq. �A3�, one finally obtains Eq. �35�.

Finally, C0 from Eq. �A13� can be expressed through the
reaction rate constants w1��0� ,w2��0� , . . . ,wK� �0�, see Eq. �36�.
Indeed, let us expand the denominator of Eq. �A13� and use
Eq. �A2�,

�1 − 	1
−1��1 − 	2

−1� ¯ �1 − 	K
−1� = 1 − �

i

	i
−1 + �

i�j

	i
−1	 j

−1

+ ¯ + �− 1�K	1
−1
¯ 	K

−1

=
�− 1�K

	1 ¯ 	K
��− 1�KsK

�0�

+ �− 1�K−1sK−1
�0� + ¯ + 1� .

�A17�

Using Eqs. �A8� and �A12�, we rewrite Eq. �A17� as

�1 − 	1
−1��1 − 	2

−1� ¯ �1 − 	K
−1� = 1 − �w1��0� + . . . + wK� �0��

− �w2��0� + ¯ + wK� �0��

− ¯ − wK� �0� = 1 − w1��0�

− 2w2��0� − 3w3��0� − ¯

− KwK� �0� . �A18�

Plugging this into Eq. �A13� one obtains Eq. �36�.

APPENDIX B

Here we show that, in extinction scenario A, the two real
and positive roots of Eq. �31� are 	0=1 and 0�	1�1,
whereas all other roots obey the inequality �	i�1��	1. We
start by showing that 	1, the positive root of Eq. �33�, obeys
the inequalities 0�	1�1. The left hand side of Eq. �33� side
is a monotone decreasing function of 	. At 	=1 it is equal to
1−w1��0�−2w2��0�− ¯−KwK� �0�. This quantity is negative, as
n=0 is a repelling fixed point, so the rescaled reaction rate
constants satisfy the inequality w1��0�+2w2��0�+ ¯+KwK� �0�
−1�0. On the other hand, at 	=0 the left hand side is 1.
Hence, 0�	1�1.

Now we will prove by contradiction that all other �nega-
tive or complex� roots satisfy the inequaltity �	i�1��	1. As-
sume by contradiction that there exists a root 	 j so that �	 j�
�	1. Denote 	 j =aei�. Then by assumption a�	1. Substitut-
ing 	 j into Eq. �33� we have

1 − w1��0�	 j − ¯ − wK� �0��	 j + ¯ + 	 j
K� = 1 − w1��0�a cos �

− ¯ − wK� �0��a cos � + ¯ + aK cos K�� + i� ¯ � = 0,

�B1�

where both real and imaginary parts have to vanish sepa-
rately. Now we substitute 	1 into Eq. �33� and use Eq. �B1�

0 = 1 − w1��0�	1 − ¯ − wK� �0��	1 + ¯ + 	1
K� � 1 − w1��0�a

− ¯ − wK� �0��a + ¯ + aK� � 1 − w1��0�a cos � − ¯

− wK� �0��a cos � + ¯ + aK cos K�� = 0, �B2�

where the last inequality holds since 	 j is complex or nega-
tive, so ��0, and there exists some m for which cos m�
�1.

Equation �B2� shows a contradiction 0�0, so all roots
obey �	i�1��	1. As a result, at n�1, the recursive solution
�37� reduces to Eq. �38�, where A1 is given by Eq. �39�.

Finally, we show that A1�0, and so the asymptote �Eq.
�38�� is always positive. First, by using Eq. �A12�, one can
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see that the numerator in Eq. �39� is always negative. What is
the sign of the denominator? Here 	1−	0�0, whereas all
other terms in the product are positive. Indeed, for 	 j �0 one
has 	1−	 j �0. For any complex 	 j, there is also a complex

conjugate root 	k=	 j
¯ . Therefore, by writing 	 j =a+ ib, one

has �	1−	 j��	1−	 j
¯ �= �	1−a�2+b2�0. So, A1 is always posi-

tive, and so is the asymptote ��q� from Eq. �38�.

APPENDIX C

Here we show that, in extinction scenario B, the root 	0

=1 of Eq. �31� has the smallest absolute value among all of
the roots. To this end we will prove that the roots of Eq. �33�
obey the inequality �	 j�0��1. Let us denote 	 j�0=aje

i�j, in
general a complex number, and assume by contradiction that
aj �1. Plugging 	=	 j into Eq. �33�, we obtain

1 − aj cos�� j�w1��0� − �aj cos�� j� + aj
2 cos�2� j��w2��0� − ¯

− �aj cos�� j� + ¯ + aj
K cos�K� j��wK� �0� + i�¯� = 0,

�C1�

where the real and imaginary parts must vanish separately.
As we have assumed aj �1, we have aj

m cos�m� j��1 for all
integer m�0. Therefore, we can write for the real part of Eq.
�C1�,

0 = 1 − aj cos�� j�w1��0� − �aj cos�� j� + aj
2 cos�2� j��w2��0�

− ¯ − �aj cos�� j� + ¯ + aj
K cos�K� j��wK� �0� � 1

− w1��0� − 2w2��0� − ¯ − KwK� �0� � 0, �C2�

where the last inequality follows from n=0 being an attract-
ing fixed point of the rate equation. Equation �C2� shows a
contradiction 0�0. Hence aj �1, and all the roots of Eq.
�33� obey the inequality �	 j�0��1.
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